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LETTER TO THE EDITOR

Anharmonic oscillators, spectral determinant and short exact
sequence ofUq(ŝl2)

J Suzuki†‡
Institute of Physics, University of Tokyo at Komaba, Komaba 3-8-1, Meguro-ku, Tokyo, Japan

Received 5 February 1999, in final form 10 March 1999

Abstract. We prove one of the conjectures, raised by Dorey and Tateo (1998 Anharmonic
oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equationsPreprintDTP-98/81,
ITPA 98-41, (hep-th/9812211)) in the connection among the spectral determinant of anharmonic
oscillator and vacuum eigenvalues of transfer matrices in field theory and statistical mechanics.
The exact sequence ofUq(ŝl2) plays a fundamental role in the proof.

Recently, Dorey and Tateo have found a remarkable connection among the spectral
determinants of a 1D Schrödinger operator associated with the anharmonic oscillator, transfer
matrices andQ operators in CFT for a certain value of Virasoro parameterp [1]. This
has been subsequently generalized to general values ofp by appropriate modifications on
the Hamiltonian [2]. The most fundamental equalities among parity-dependent spectral
determinants andQ± operators are proven by utilizing the quantum Wronskian relation.

In this letter, we provide an elementary proof of the conjectures in [1] concerning the
sum rule which is closed only among the spectral determinant (= product of parity dependent
spectral determinants). The short exact sequence in quantum affine Lie algebraUq(ŝl2) plays
a fundamental role. We consider the Schrödinger equation,

Ĥ9k(x) =
(
− d2

dx2
+ x2M

)
9k(x) = Ek9k(x). (1)

HereM is assumed to be an integer greater than two.
The spectral problem associated with this has been scrutinized in [8–12]. The properties

can be encoded into the spectral determinant

DM(E) = det(E + Ĥ ) = DM(0)
∞∏
k=0

(
1 +

E

Ek

)
(2)

andDM(0) = 1/ sin(π/(2M + 2)).
In the following, we adopt a notationDM(x) := DM(eπx/(M+1)).
Remarkably, it satisfied the exact functional relation [9], which reduces to a simple

polynomial form forM = 2:

D2(x)D2(x + 2i)D2(x + 4i) = D2(x) +D2(x + 2i) +D2(x + 4i). (3)
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ForM > 2, such a simple polynomial expression is not available and it reads explicitly,
M∑
k=0

φ(x + 2ik) = π

2

φ(x) = arcsin
1√

DM(x)DM(x + 2i)
.

(4)

On the other hand, transfer matrices are introduced in the analysis of statistical mechanics
[3], integrable structures inc < 1 CFT [4, 5] and so on†. We do not specify its precise
definition. (We refer interested readers to [3, 7, 4]) For our purpose, the following facts are
sufficient. Let the deformation parameterq be eiπβ

2
. We denote aUq(ŝl2) moduleWj(λ),

which corresponds to the (j + 1)-dimensional module ofUq(sl2). The associated (‘Drinfel’d’)
polynomial is given by

P(λ′) = (1− qj−1λλ′)(1− qj−3λλ′) . . . (1− q−j+1λλ′). (5)

See [6] for precise definitions. Taking trace of monodromy operator overWj(λ), one can define
the transfer matrixTj (λ). Tj (λ) constitutes a commutative family and satisfy the ‘T -system’,

Tj (qλ)Tj (q
−1λ) = I + Tj+1(λ)Tj−1(λ) j = 1, 2, . . . (6)

andT0 = I. (Note the suffixj and the normalization ofλ are defined differently from [4].)
As we are considering these operators on their common eigenvector space, we will use

the same symbolTj for its eigenvalue.
Forβ2 = 1

M+1, the above functional relations close finitely due to the following property:

TM−j (λ) = TM+j (λ) j = 1, . . . ,M (7)

andT2M+1(λ) = 0.
Again we adopt the ‘additive variable’x rather than ‘multiplicative variable’λ, Tj (x) =

Tj (eπx/(M+1)). Then theT -system (6) reads

Tj (x + i)Tj (x − i) = 1 +Tj+1(x)Tj−1(x). (8)

We also remark periodicity,

Tj (x + (2M + 2)i) = Tj (x). (9)

(The variableθ in [1] is related tox by θ = xπ/2M.)
In [14, 7], it has been shown that the substitution ofYj (x) = Tj−1(x)Tj+1(x) into (8)

yields the well knownY -system [15]. The solution to theY - or T -system is not necessarily
unique. One needs to know zeros or singularities ofYj (x), or equivalently,Tj (x) in a ‘physical
strip’ (Im x ∈ [−1, 1]) to fix a solution. With this knowledge, one reaches the thermodynamic
Bethe ansatz (TBA) equation, which yields a unique solution.

Dorey and Tateo showed, forM = 2,D2(x) andT2(x) satisfy the same functional relation
(3). The coincidence carries forward. With some additional tuning of parameters, they share
the same analytic structure, which validatesD2(x) = T2(x). ForM > 2 they presented
numerical evidences to support a conjectureDM(x) = TM(x) instead of proving that they
satisfy the same functional relation (4).

In the following we will supply the proof. The idea is to utilize the short exact sequence
of Uq(ŝl2) in [6]. (TheT -system is one of the simplest consequences of it.) The short exact
sequence reads,

0−→ Wα−p(λq−p)⊗Wβ−p(λ′q−p) −→ Wα(λ)⊗Wβ(λ
′)

−→ Wp−1(λq
α−p+1)⊗Wα+β−p+1(λ

′q−(α−p+1)) −→ 0

for
λ′

λ
= qα+β−2p+2. (10)

† See the discussions on transfer matrices in quantum impurity problems [13].
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We abbreviate these modules toW0 ∼ W5, and the corresponding transfer matrixTWi
(trace

of monodromy operator overWi). Then the consequence of (10) is,

0= TW0TW1 − TW2TW3 + TW4TW5. (11)

In the additive variable, the equivalent ‘generalizedT -system’ reads,

Tα(x)Tβ(x + (α + β − 2p + 2)i) = Tα−p(x − ip)Tβ−p(x + i(α + β − p + 2))

+Tp−1(x + i(α − p + 1))Tα+β−p+1(x + i(β − p + 1)). (12)

One substitutesα = β = p = j to recover (8). We refer to the above identity byI (α, β, p, x).
We first give the following statement.

Theorem 1. Letψ(x) beφ(x) in (4) replacingDM(x) byTM(x),

ψ(x) = arcsin
1√

TM(x)TM(x + 2i)
. (13)

Then we have,
M∑
k=0

ψ(x + 2ik) = π

2
. (14)

We prove the above theorem in an equivalent form,

cos(ψ(x) +ψ(x + 2i) + · · · +ψ(x + (2M − 4)i))

= sin(ψ(x + (2M − 2)i) +ψ(x + 2M i)) M odd

cos(ψ(x) +ψ(x + 2i) + · · · +ψ(x + (2M − 2)i)) = sin(ψ(x + 2M i))) M even

(15)

following [9]. To be precise, the condition (15) literally leaves multiples of 2π indeterminate
in the right-hand side of (14). This can however be fixed from the asymptotic value
TM(|x| → ∞) = 1/ sin(π/(2M + 2)), which can be derived from the algebraic relation
(8) by sendingx →∞. We verify that (15) coincides with (14).

To show (15), we prepare a few lemmas as follows.

Lemma 1.

sin(ψ(x) +ψ(x + 2i)) = T1(x + i(M + 3))√
TM(x)TM(x + 4i)

cos(ψ(x) +ψ(x + 2i)) = TM−2(x + 2i)√
TM(x)TM(x + 4i)

.

(16)

Proof. We first note

cos(ψ(x)) =
√

1− sin2(ψ(x)) =
√

1− 1

TM(x)TM(x + 2i)

=
√
TM−1(x + i)TM+1(x + i)

TM(x)TM(x + 2i)
= TM−1(x + i)√

TM(x)TM(x + 2i)
(17)

where (8) and (7) are used in the last two equalities. By expanding the left-hand side of the
first equation in lemma 1, we have,

sin(ψ(x) +ψ(x + 2i)) = sin(ψ(x)) cos(ψ(x + 2i)) + sin(ψ(x + 2i)) cos(ψ(x))

= TM−1(x + 3i) + TM−1(x + i)

TM(x + 2i)
√
TM(x)TM(x + 4i)

= T1(x + i(M + 3))√
TM(x)TM(x + 4i)

(18)
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where we have appliedI (M, 1, 1, x + 2i),

TM(x + 2i)T1(x + i(M + 3)) = TM−1(x + i) + TM+1(x + 3i)

= TM−1(x + i) + TM−1(x + 3i). (19)

The second relation is similarly proved. �

We further generalize the expansion of trigonometric functions with even arguments more
than two.

Lemma 2. Let` be an odd integer. We have the following relation:(
cos(ψ(x) +ψ(x + 2i) + · · · +ψ(x + 2`i))
sin(ψ(x) +ψ(x + 2i) + · · · +ψ(x + 2`i))

)
= 1√

TM(x)TM(x + i(2` + 2))

×
(`−1)/2∏
k=1

L(x + (4k − 4)i)

TM(x + 4ki)

(
TM−2(x + 2`i)

T1(x + i(M + 2` + 1)

)
L(x) :=

(
TM−2(x + 2i), −T1(x + i(M + 3))

T1(x + i(M + 3)), TM−2(x + 2i)

) (20)

where the order of the operator product should be understood as,

L(x)L(x + 4i) . . .L(x + (2`− 6)i).

Proof. This is easily shown by iterative applications of the recursion relation,(
cos(ψ(x) +ψ(x + 2i) + · · · +ψ(x + 2`i))
sin(ψ(x) +ψ(x + 2i) + · · · +ψ(x + 2`i))

)
= 1√

TM(x)TM(x + 4i)

×L(x)

(
cos(ψ(x + 4i) +ψ(x + 6i) + · · · +ψ(x + 2`i))
sin(ψ(x + 4i) +ψ(x + 6i) + · · · +ψ(x + 2`i))

)
(21)

which follows from lemma 1. �

The above recursion procedure is regarded as the forward propagation. Next let us perform
the back-propagation procedure: we apply matricesL on the column vector. We observe a
simple pattern there, which can be summarized as the following lemma.

Lemma 3. We introduce a vectorvt by

vt :=
(
TM−2−2t (x − (6 + 2t)i)
T2t+1(x + (M − 5− 2t)i)

)
. (22)

Then the following back-propagation relation holds,

L(x + i(2M − 10− 4t))vt = TM(x − (4t + 8)i)vt+1. (23)

Proof. The first component in the left-hand side in (23) reads

TM−2(x − (10 + 4t)i)TM−2−2t (x − (6 + 2t)i)

−T1(x + i(M − 9− 4t))T2t+1(x − i(M + 2t + 7)) (24)

where we have applied the periodicity (9) to the last component. By the use ofI (M − 2,M −
2t − 2,M − 2t − 3, x − (4t + 10)i), one finds (24) equalsTM(x − (4t + 8)i)TM−2−2(t+1)(x −
i(2(t + 1)+ 6)i), which is nothing but the first component of the right-hand side. Similarly one
appliesI (M, 2t + 3, 2, x − (4t + 8)i) to the second component of the right-hand side in (23),
leading to the equality. �
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We shall fix the relation betweeǹandM as follows:

` =
{
M − 2 if M = odd

M − 1 if M = even.
(25)

Then our final lemma is as follows.

Lemma 4. Under the above relation between` andM, one has

cos(ψ(x) + · · ·ψ(x + 2`i)) =


T1(x − i(M + 3))√

TM(x)TM(x + (2M − 2)i)
M odd

1√
TM(x)TM(x + 2M i)

M even.
(26)

Proof. Let us applyL to the vector in (20). ForM odd, the initial vector reads,(
TM−2(x − 6i)

T1(x + i(M − 5)i)

)
(27)

which is nothing butvt=0 in (22). The product of matrices in (20) is

L(x)L(x + 4i) . . .L(x + (2M − 14)i)L(x + (2M − 10)i). (28)

Thus one can apply (23) recursively to find

L(x) . . .L(x + (2M − 10)i)v0 =
(M−3)/2∏
j=1

TM(x − (4 + 4j)i)

(
T1(x − i(M + 3))
TM−2(x − 2i)

)
. (29)

Substituting (29) into (20), and after rearrangement using (9) one arrives at the odd case of
lemma 4 from the first component. ForM even, initial vector isv′t=0 = vt=0(x → x + 2i).
Similarly, the product ofL is given byx → x + 2i in (28). The result of the application reads

· · ·L(x + (2M − 12)i)L(x + (2M − 8)i)v′0

=
(M−2)/2∏
j=1

TM(x − (2 + 4j)i)

(
T0(x − (M + 2)i)
TM−1(x − i)

)
. (30)

Again the substitution of (30) into (20) leads to lemma 4 forM even case. �

Proof of theorem 1.Now the left-hand side of (15) is explicitly written in terms ofT -functions
in lemma 4. It remains to check that it coincides with right-hand side. This can be easily done
by (1) or from the definition ofψ(x) itself. �

As is noted previously, the common functional relation does not grantee the equality,
TM(x) = DM(x): one needs further knowledge on their analytic structures. In this respect,
we shall entirely depend on the argument in [1]. In the TBA equation originated fromT -
system, one shall take the massless drive terms,mareπx/2M , (a = 1, . . .2M − 1) and setting
mMr = π1/20( 1

2M )/(M0(
3
2 + 1

2M )). ThenDM(x) and TM(x) share the same analytical
properties: both of them have the same ‘asymptotic value’ and have zeros on Imx = ±(M+1).
The latter is consistent with a property of the Schrödinger operator that eigenstates are all
bounded soEk > 0. Thus one concludes the equality,DM(x) = TM(x).

Summarizing, we have proven one of conjectures in [1] thatTM(x) actually shares the
same functional relation withDM(x). The proof utilizes the exact sequence ofUq(ŝl2). This
makes us expect further deep connections between the anharmonic oscillator and quantum
integrable structures.

The author thanks A Kuniba for calling his attention to [1] and for useful comments. He also
thanks V V Bazhanov, T Miwa, Y Pugai and Z Tsuboi for comments.
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