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LETTER TO THE EDITOR

Anharmonic oscillators, spectral determinant and short exact
sequence olJ,(sly)

J Suzukit#
Institute of Physics, University of Tokyo at Komaba, Komaba 3-8-1, Meguro-ku, Tokyo, Japan

Received 5 February 1999, in final form 10 March 1999

Abstract. We prove one of the conjectures, raised by Dorey and Tateo (1998 Anharmonic
oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equRmmstDTP-98/81,

ITPA 98-41, (hep-th/9812211)) in the connection among the spectral determinant of anharmonic
oscillator and vacuum eigenvalues of transfer matrices in field theory and statistical mechanics.
The exact sequence 0, (sk) plays a fundamental role in the proof.

Recently, Dorey and Tateo have found a remarkable connection among the spectral
determinants of a 1D Scbdinger operator associated with the anharmonic oscillator, transfer
matrices andl operators in CFT for a certain value of Virasoro parametdd]. This

has been subsequently generalized to general valugshgf appropriate modifications on

the Hamiltonian [2]. The most fundamental equalities among parity-dependent spectral
determinants an@.. operators are proven by utilizing the quantum Wronskian relation.

In this letter, we provide an elementary proof of the conjectures in [1] concerning the
sum rule which is closed only among the spectral determirapr¢duct of parity dependent
spectral determinants). The short exact sequence in quantum affine Lie dljédsa plays
a fundamental role. We consider the Sidinger equation,

A d?
HWY (x) = <—@ +XZM) W (x) = EpWi(x). 1)

HereM is assumed to be an integer greater than two.
The spectral problem associated with this has been scrutinized in [8-12]. The properties
can be encoded into the spectral determinant

Dy(E) = del(E + ) = Dy(© [ | (1 . E) @
k=0 Ey

and Dy (0) = 1/sin(r/(2M + 2)).

In the following, we adopt a notatiaRy, (x) := D, (€7*/M*+D),

Remarkably, it satisfied the exact functional relation [9], which reduces to a simple
polynomial form forM = 2:

Dy(x)Do(x + 2))Do(x + 4i) = Dy(x) + Do(x + 2i) + Da(x + 4i). (3)
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For M > 2, such a simple polynomial expression is not available and it reads explicitly,

Z ¢ (x + 2ik) =
k=0 1 (4)

= arcsin .
P D) Da (x + 20

On the other hand, transfer matrices are introduced in the analysis of statistical mechanics
[3], integrable structures in < 1 CFT [4,5] and so ont. We do not specify its precise
definition. (We refer interested readers to [3, 7, 4]) For our purpose, the following facts are
sufficient. Let the deformation parametgtbe é7%* We denote &, (512) module W; (A),
which corresponds to thg ¢ 1)-dimensional module df, (sl;). The associated (‘Drinfel'd’)
polynomial is given by

PO =A—qg’ a)yA =g/ 3y ... A =g 7™, (5)

See [6] for precise definitions. Taking trace of monodromy operatorigyer), one can define
the transfer matrig’; (). T; (1) constitutes a commutative family and satisfy tifiesystem’,

Tj(gMTi(q "2 = I +Tja(WTj-1() j=12... (6)
andT, = I. (Note the suffixj and the normalization of are defined differently from [4].)
As we are considering these operators on their common eigenvector space, we will use
the same symbcT for its eigenvalue.
Forpg? = M+1, the above functional relations close finitely due to the following property:
Ty—j(A) = Tiy+j(A) j=1..., (7)
andTby+1(2) =0
Again we adopt the ‘additive variable’ rather than ‘multiplicative variableX, T;(x) =
T;(e"*/M*D) Then theT-system (6) reads

Ti(x +DT;(x —1) = L+ Tj11(0)Tj_1(x). ®)
We also remark periodicity,
T;(x + (2M + 2)i) = T; (x). 9

(The variable in [1] is related tax by 6 = x7/2M.)

In [14, 7], it has been shown that the substitutionYpfx) = T;_1(x)7T;+1(x) into (8)
yields the well knownY -system [15]. The solution to thE- or T-system is not necessarily
unigue. One needs to know zeros or singularitie®;of ), or equivalentlyT; (x) in a ‘physical
strip’ (Im x € [—1, 1]) to fix a solution. With this knowledge, one reaches the thermodynamic
Bethe ansatz (TBA) equation, which yields a unique solution.

Dorey and Tateo showed, fof = 2, D,(x) andT>(x) satisfy the same functional relation
(3). The coincidence carries forward. With some additional tuning of parameters, they share
the same analytic structure, which valida®gx) = T»(x). For M > 2 they presented
numerical evidences to support a conjectivg(x) = Ty (x) instead of proving that they
satisfy the same functional relation (4).

In the following we will supply the proof. The idea is to utilize the short exact sequence
of U, (5[2) in [6]. (The T-system is one of the simplest consequences of it.) The short exact
sequence reads,

0— W"‘—b()‘qip) ® Wﬂ_p()\. qu) — W,(\) ® Wﬁ()»/)
— Wl’_l()‘qa_pﬂ) ® Wa+ﬁ—p+1()hlq_(a_p+l)) — 0
)\/
for x - qa+ﬁ—2p+2. (10)

T See the discussions on transfer matrices in quantum impurity problems [13].
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We abbreviate these modulesi® ~ Ws, and the corresponding transfer matfix, (trace
of monodromy operator ové¥;). Then the consequence of (10) is,

0 = Tw,Tw, — Tw,Tw, + Tw, Tw.. (11)
In the additive variable, the equivalent ‘generalizégystem’ reads,
T,()Tp(x +(a@+B —=2p+2)i) =Ty p(x —ip)Tp_p(x +i(@+p — p+2)

+Tp1(x +i(a — p+ D) Tpap—prr(x +i(B — p+1)). (12)

One substitutes = 8 = p = j torecover (8). We refer to the above identityky, 8, p, x).
We first give the following statement.

Theorem 1. Letyr(x) beg (x) in (4) replacingD,, (x) by Ty, (x),

. 1
Y (x) = arcsin T (13)
Then we have,
M b
> w(x +2ik) = 3 (14)
k=0

We prove the above theorem in an equivalent form,

cog Y (x) + Y (x +20) +--- + Y (x +(2M — D))
= sin(y (x + (M — 2)i) + ¥ (x + 2Mi)) M odd (15)

cos Y (x) + Y (x +2i) +- -+ Y (x + (2M — 2)i)) = sin(y (x + 2Mi))) M even
following [9]. To be precise, the condition (15) literally leaves multiples ofi@determinate
in the right-hand side of (14). This can however be fixed from the asymptotic value
Ty (lx] — oo) = 1/sin(m/(2M + 2)), which can be derived from the algebraic relation
(8) by sendinge — oo. We verify that (15) coincides with (14).

To show (15), we prepare a few lemmas as follows.

Lemma 1.
. L Ti(x +i(M +3))
sin(yr (x) + ¢ (x + 20)) = T T G
. (16)
COSY (x) + Y (x + 20)) = M2+ 2D
STy O Ty (x + 40y
Proof. We first note
co =,/1—sir? = /1 !
Y (x)) = - W) = - m
[Ty + DTy (x +1) Ty—1(x +1) 17)
B Tu()Ty(x +2i) Ty (x)Ty(x + 20

where (8) and (7) are used in the last two equalities. By expanding the left-hand side of the
first equation in lemma 1, we have,

sin(y (x) + ¥ (x + 2i)) = sin(y (x)) coyr (x + 2i)) + sin(y (x + 2i)) coxyr (x))

Tyr—1(x + 3i) + Ty 1 (x +1)

T Ty (x + 20T ) Tor (x + 40)
_ Ti(x +1(M + 3)). (18)
T () T (x + A1)
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where we have appliet(M, 1, 1, x + 2i),
Ty (x +2)T1(x +1(M +3)) = Tyy—1(x +1) + Ty (x + 3i)
= Ty—1(x +i) + Tp_1(x + 3i). (19)
The second relation is similarly proved. |

We further generalize the expansion of trigonometric functions with even arguments more
than two.

Lemma 2. Let£ be an odd integer. We have the following relation:
<COS(¢(X)+¢(X+2i)+---+¢(x+2€i))> 1

SINY () + Y (x +2) + -+ (x +20)) | T Ty () Ty (x F1(20 + 2))

D28+ @k —B)i) [ Ty_olx +260)
1 T+ ki) \Ta(x +i(M +20+1)
Ty—o(x +2i),  —Ti(x +i(M +3))

Ti(x +i(M +3)), Ty—2(x + 2i)

X

(20)

L£(x) = <

where the order of the operator product should be understood as,
L) L(x +4i) ... L(x + (2¢ — 6)i).

Proof. This is easily shown by iterative applications of the recursion relation,

<COS(W(x)+1/f(x+2i)+-~+1/f(x+2€i))) _ 1
SiN(Yr (x) + ¥ (x +20) +-- -+ (x + 200)) Ty )Ty (x + 4i)

COS(Yr (x + 4i) + ¥ (x +6i) +- -+ (x + 20i))
x £(x) (sin(w(x +4i) + Y (x +6i) +- -+ Y (x + 200)) ) (22)

which follows from lemma 1. O
The above recursion procedure is regarded as the forward propagation. Nextletus perform

the back-propagation procedure: we apply matricem the column vector. We observe a
simple pattern there, which can be summarized as the following lemma.

Lemma 3. We introduce a vectar, by

| Tu—2-2(x — (6 +20)i)
V= <T2,+1(x +(M —-5-— 2t)i)> ) (22)
Then the following back-propagation relation holds,

L(x +i(2M — 10— 41)v, = Ty (x — (4t + 8))vy1. (23)

Proof. The first component in the left-hand side in (23) reads

Ty—2(x — (10 + 4))) Ty_z-2(x — (6 + 2)i)
~Ty(x +i(M — 9 — 4) Toraa(x — (M +21 +7)) (24)

where we have applied the periodicity (9) to the last component. By the us@fof 2, M —
2t —2, M — 2t — 3, x — (4t + 10)i), one finds (24) equalBy (x — (4t + 8)I)Tpr_2_p¢+1)(x —
i(2(t + 1) + 6)i), which is nothing but the first component of the right-hand side. Similarly one
applies] (M, 2t + 3, 2, x — (4t + 8)i) to the second component of the right-hand side in (23),
leading to the equality. O
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We shall fix the relation betweehand M as follows:

M-2 if M = odd
0= , (25)

M-1 if M = even.
Then our final lemma is as follows.
Lemma 4. Under the above relation betweérand M, one has

Ti(x —i(M +23)) _ M odd
COSYr(x) + -+ Yr(x + 20i)) = | VT @y (e + (@M = 2D) (26)
M even.

Ty () Ty (x + 2M0)

Proof. Let us applyg to the vector in (20). FoM odd, the initial vector reads,
Ty—2(x — 6i)
<T1(x +i(M — 5)i)> 27)
which is nothing bub,—g in (22). The product of matrices in (20) is

L)L(x +4iy...L(x +(2M — 1D L(x + (2M — 10)i). (28)
Thus one can apply (23) recursively to find
(M-3)/2 .
£()... £+ @M 10010 =[] Tu(x — (@+4p) (Tlg _2(';]‘{ ;g”) . (9)
Jj=1 -

Substituting (29) into (20), and after rearrangement using (9) one arrives at the odd case of
lemma 4 from the first component. F&f even, initial vector i,_y = v,=o(x — x + 2i).
Similarly, the product of is given byx — x + 2i in (28). The result of the application reads

Lk + (M — 12))E(x + (2M — 8)i)v)

(M=2)/2 .
= 1‘[ Ty (x — (2 +4))i) (TO(X - M +.2)')> ) (30)
i Ty-1(x =1
Again the substitution of (30) into (20) leads to lemma 4f6even case. a

Proof of theorem 1. Now the left-hand side of (15) is explicitly written in terms®ffunctions
in lemma 4. It remains to check that it coincides with right-hand side. This can be easily done
by (1) or from the definition of} (x) itself. a

As is noted previously, the common functional relation does not grantee the equality,
Ty (x) = Dy (x): one needs further knowledge on their analytic structures. In this respect,
we shall entirely depend on the argument in [1]. In the TBA equation originated from
system, one shall take the massless drive temmse™/?M, (a = 1,...2M — 1) and setting
myr = 7?0 () /(MT (3 + 5+)). ThenDy(x) and Ty (x) share the same analytical
properties: both of them have the same ‘asymptotic value’ and have zeroswos l#(M +1).

The latter is consistent with a property of the Sidinger operator that eigenstates are all
bounded s&; > 0. Thus one concludes the equaliBy, (x) = Ty (x).

Summarizing, we have proven one of conjectures in [1] fatr) actually shares the
same functional relation witf,, (x). The proof utilizes the exact sequencelffisl,). This
makes us expect further deep connections between the anharmonic oscillator and quantum
integrable structures.

The author thanks A Kuniba for calling his attention to [1] and for useful comments. He also
thanks V V Bazhanov, T Miwa, Y Pugai and Z Tsuboi for comments.
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