Anharmonic oscillators, spectral determinant and short exact sequence of $U_{q}\left(\hat{ज} \hat{l}_{2}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1999 J. Phys. A: Math. Gen. 32 L183
(http://iopscience.iop.org/0305-4470/32/16/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Anharmonic oscillators, spectral determinant and short exact sequence of $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$

J Suzuki† \ddagger
Institute of Physics, University of Tokyo at Komaba, Komaba 3-8-1, Meguro-ku, Tokyo, Japan

Received 5 February 1999, in final form 10 March 1999

Abstract

We prove one of the conjectures, raised by Dorey and Tateo (1998 Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations Preprint DTP-98/81, ITPA 98-41, (hep-th/9812211)) in the connection among the spectral determinant of anharmonic oscillator and vacuum eigenvalues of transfer matrices in field theory and statistical mechanics. The exact sequence of $U_{q}\left(\widehat{\left.\mathfrak{s h}_{2}\right)}\right.$ plays a fundamental role in the proof.

Recently, Dorey and Tateo have found a remarkable connection among the spectral determinants of a 1D Schrödinger operator associated with the anharmonic oscillator, transfer matrices and Q operators in CFT for a certain value of Virasoro parameter p [1]. This has been subsequently generalized to general values of p by appropriate modifications on the Hamiltonian [2]. The most fundamental equalities among parity-dependent spectral determinants and $Q_{ \pm}$operators are proven by utilizing the quantum Wronskian relation.

In this letter, we provide an elementary proof of the conjectures in [1] concerning the sum rule which is closed only among the spectral determinant (= product of parity dependent spectral determinants). The short exact sequence in quantum affine Lie algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ plays a fundamental role. We consider the Schrödinger equation,

$$
\begin{equation*}
\hat{H} \Psi_{k}(x)=\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2 M}\right) \Psi_{k}(x)=E_{k} \Psi_{k}(x) \tag{1}
\end{equation*}
$$

Here M is assumed to be an integer greater than two.
The spectral problem associated with this has been scrutinized in [8-12]. The properties can be encoded into the spectral determinant

$$
\begin{equation*}
D_{M}(E)=\operatorname{det}(E+\hat{H})=D_{M}(0) \prod_{k=0}^{\infty}\left(1+\frac{E}{E_{k}}\right) \tag{2}
\end{equation*}
$$

and $D_{M}(0)=1 / \sin (\pi /(2 M+2))$.
In the following, we adopt a notation $\mathcal{D}_{M}(x):=D_{M}\left(\mathrm{e}^{\pi x /(M+1)}\right)$.
Remarkably, it satisfied the exact functional relation [9], which reduces to a simple polynomial form for $M=2$:

$$
\begin{equation*}
\mathcal{D}_{2}(x) \mathcal{D}_{2}(x+2 \mathrm{i}) \mathcal{D}_{2}(x+4 \mathrm{i})=\mathcal{D}_{2}(x)+\mathcal{D}_{2}(x+2 \mathrm{i})+\mathcal{D}_{2}(x+4 \mathrm{i}) \tag{3}
\end{equation*}
$$

\dagger E-mail address: suz@hep1.c.u-tokyo.ac.jp
\ddagger Current address: Department of Physics, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422, Japan.

For $M>2$, such a simple polynomial expression is not available and it reads explicitly,

$$
\begin{align*}
& \sum_{k=0}^{M} \phi(x+2 \mathrm{i} k)=\frac{\pi}{2} \tag{4}\\
& \phi(x)=\arcsin \frac{1}{\sqrt{\mathcal{D}_{M}(x) \mathcal{D}_{M}(x+2 \mathrm{i})}}
\end{align*}
$$

On the other hand, transfer matrices are introduced in the analysis of statistical mechanics [3], integrable structures in $c<1$ CFT [4,5] and so on \dagger. We do not specify its precise definition. (We refer interested readers to [3, 7, 4]) For our purpose, the following facts are sufficient. Let the deformation parameter q be $\mathrm{e}^{\mathrm{i} \pi \beta^{2}}$. We denote a $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ module $W_{j}(\lambda)$, which corresponds to the $(j+1)$-dimensional module of $U_{q}\left(\mathfrak{s l}_{2}\right)$. The associated ('Drinfel'd') polynomial is given by

$$
\begin{equation*}
P\left(\lambda^{\prime}\right)=\left(1-q^{j-1} \lambda \lambda^{\prime}\right)\left(1-q^{j-3} \lambda \lambda^{\prime}\right) \ldots\left(1-q^{-j+1} \lambda \lambda^{\prime}\right) . \tag{5}
\end{equation*}
$$

See [6] for precise definitions. Taking trace of monodromy operator over $W_{j}(\lambda)$, one can define the transfer matrix $T_{j}(\lambda) . T_{j}(\lambda)$ constitutes a commutative family and satisfy the ' T-system',

$$
\begin{equation*}
\boldsymbol{T}_{j}(q \lambda) \boldsymbol{T}_{j}\left(q^{-1} \lambda\right)=\boldsymbol{I}+\boldsymbol{T}_{j+1}(\lambda) \boldsymbol{T}_{j-1}(\lambda) \quad j=1,2, \ldots \tag{6}
\end{equation*}
$$

and $\boldsymbol{T}_{0}=\boldsymbol{I}$. (Note the suffix j and the normalization of λ are defined differently from [4].)
As we are considering these operators on their common eigenvector space, we will use the same symbol \boldsymbol{T}_{j} for its eigenvalue.

For $\beta^{2}=\frac{1}{M+1}$, the above functional relations close finitely due to the following property:

$$
\begin{equation*}
\boldsymbol{T}_{M-j}(\lambda)=\boldsymbol{T}_{M+j}(\lambda) \quad j=1, \ldots, M \tag{7}
\end{equation*}
$$

and $\boldsymbol{T}_{2 M+1}(\lambda)=0$.
Again we adopt the 'additive variable' x rather than 'multiplicative variable' $\lambda, T_{j}(x)=$ $\boldsymbol{T}_{j}\left(\mathrm{e}^{\pi x /(M+1)}\right)$. Then the T-system (6) reads

$$
\begin{equation*}
T_{j}(x+\mathrm{i}) T_{j}(x-\mathrm{i})=1+T_{j+1}(x) T_{j-1}(x) \tag{8}
\end{equation*}
$$

We also remark periodicity,

$$
\begin{equation*}
T_{j}(x+(2 M+2) \mathrm{i})=T_{j}(x) . \tag{9}
\end{equation*}
$$

(The variable θ in [1] is related to x by $\theta=x \pi / 2 M$.)
In [14, 7], it has been shown that the substitution of $Y_{j}(x)=T_{j-1}(x) T_{j+1}(x)$ into (8) yields the well known Y-system [15]. The solution to the Y - or T-system is not necessarily unique. One needs to know zeros or singularities of $Y_{j}(x)$, or equivalently, $T_{j}(x)$ in a 'physical strip' $(\operatorname{Im} x \in[-1,1])$ to fix a solution. With this knowledge, one reaches the thermodynamic Bethe ansatz (TBA) equation, which yields a unique solution.

Dorey and Tateo showed, for $M=2, \mathcal{D}_{2}(x)$ and $T_{2}(x)$ satisfy the same functional relation (3). The coincidence carries forward. With some additional tuning of parameters, they share the same analytic structure, which validates $\mathcal{D}_{2}(x)=T_{2}(x)$. For $M>2$ they presented numerical evidences to support a conjecture $\mathcal{D}_{M}(x)=T_{M}(x)$ instead of proving that they satisfy the same functional relation (4).

In the following we will supply the proof. The idea is to utilize the short exact sequence of $U_{q}(\widehat{\mathfrak{s l}})$ in [6]. (The T-system is one of the simplest consequences of it.) The short exact sequence reads,

$$
\begin{align*}
& 0 \longrightarrow W_{\alpha-p}\left(\lambda q^{-p}\right) \otimes W_{\beta-p}\left(\lambda^{\prime} q^{-p}\right) \longrightarrow W_{\alpha}(\lambda) \otimes W_{\beta}\left(\lambda^{\prime}\right) \\
& \longrightarrow W_{p-1}\left(\lambda q^{\alpha-p+1}\right) \otimes W_{\alpha+\beta-p+1}\left(\lambda^{\prime} q^{-(\alpha-p+1)}\right) \longrightarrow 0 \\
& \text { for } \frac{\lambda^{\prime}}{\lambda}=q^{\alpha+\beta-2 p+2} . \tag{10}
\end{align*}
$$

\dagger See the discussions on transfer matrices in quantum impurity problems [13].

We abbreviate these modules to $W_{0} \sim W_{5}$, and the corresponding transfer matrix $T_{W_{i}}$ (trace of monodromy operator over W_{i}). Then the consequence of (10) is,

$$
\begin{equation*}
0=T_{W_{0}} T_{W_{1}}-T_{W_{2}} T_{W_{3}}+T_{W_{4}} T_{W_{5}} . \tag{11}
\end{equation*}
$$

In the additive variable, the equivalent 'generalized T-system' reads,

$$
\begin{gather*}
T_{\alpha}(x) T_{\beta}(x+(\alpha+\beta-2 p+2) \mathrm{i})=T_{\alpha-p}(x-\mathrm{i} p) T_{\beta-p}(x+\mathrm{i}(\alpha+\beta-p+2)) \\
+T_{p-1}(x+\mathrm{i}(\alpha-p+1)) T_{\alpha+\beta-p+1}(x+\mathrm{i}(\beta-p+1)) \tag{12}
\end{gather*}
$$

One substitutes $\alpha=\beta=p=j$ to recover (8). We refer to the above identity by $I(\alpha, \beta, p, x)$.
We first give the following statement.
Theorem 1. Let $\psi(x)$ be $\phi(x)$ in (4) replacing $\mathcal{D}_{M}(x)$ by $T_{M}(x)$,

$$
\begin{equation*}
\psi(x)=\arcsin \frac{1}{\sqrt{T_{M}(x) T_{M}(x+2 \mathrm{i})}} \tag{13}
\end{equation*}
$$

Then we have,

$$
\begin{equation*}
\sum_{k=0}^{M} \psi(x+2 \mathrm{i} k)=\frac{\pi}{2} \tag{14}
\end{equation*}
$$

We prove the above theorem in an equivalent form,
$\cos (\psi(x)+\psi(x+2 \mathrm{i})+\cdots+\psi(x+(2 M-4) \mathrm{i}))$

$$
\begin{equation*}
=\sin (\psi(x+(2 M-2) \mathrm{i})+\psi(x+2 M \mathrm{i})) \quad M \text { odd } \tag{15}
\end{equation*}
$$

$\cos (\psi(x)+\psi(x+2 \mathrm{i})+\cdots+\psi(x+(2 M-2) \mathrm{i}))=\sin (\psi(x+2 M \mathrm{i}))) \quad M$ even
following [9]. To be precise, the condition (15) literally leaves multiples of 2π indeterminate in the right-hand side of (14). This can however be fixed from the asymptotic value $T_{M}(|x| \rightarrow \infty)=1 / \sin (\pi /(2 M+2))$, which can be derived from the algebraic relation (8) by sending $x \rightarrow \infty$. We verify that (15) coincides with (14).

To show (15), we prepare a few lemmas as follows.

Lemma 1.

$$
\begin{align*}
& \sin (\psi(x)+\psi(x+2 \mathrm{i}))=\frac{T_{1}(x+\mathrm{i}(M+3))}{\sqrt{T_{M}(x) T_{M}(x+4 \mathrm{i})}} \\
& \cos (\psi(x)+\psi(x+2 \mathrm{i}))=\frac{T_{M-2}(x+2 \mathrm{i})}{\sqrt{T_{M}(x) T_{M}(x+4 \mathrm{i})}} \tag{16}
\end{align*}
$$

Proof. We first note

$$
\begin{align*}
\cos (\psi(x)) & =\sqrt{1-\sin ^{2}(\psi(x))}=\sqrt{1-\frac{1}{T_{M}(x) T_{M}(x+2 \mathrm{i})}} \\
& =\sqrt{\frac{T_{M-1}(x+\mathrm{i}) T_{M+1}(x+\mathrm{i})}{T_{M}(x) T_{M}(x+2 \mathrm{i})}}=\frac{T_{M-1}(x+\mathrm{i})}{\sqrt{T_{M}(x) T_{M}(x+2 \mathrm{i})}} \tag{17}
\end{align*}
$$

where (8) and (7) are used in the last two equalities. By expanding the left-hand side of the first equation in lemma 1, we have,

$$
\begin{align*}
\sin (\psi(x)+ & \psi(x+2 \mathrm{i}))=\sin (\psi(x)) \cos (\psi(x+2 \mathrm{i}))+\sin (\psi(x+2 \mathrm{i})) \cos (\psi(x)) \\
& =\frac{T_{M-1}(x+3 \mathrm{i})+T_{M-1}(x+\mathrm{i})}{T_{M}(x+2 \mathrm{i}) \sqrt{T_{M}(x) T_{M}(x+4 \mathrm{i})}} \\
& =\frac{T_{1}(x+\mathrm{i}(M+3))}{\sqrt{T_{M}(x) T_{M}(x+4 \mathrm{i})}} \tag{18}
\end{align*}
$$

where we have applied $I(M, 1,1, x+2 \mathrm{i})$,

$$
\begin{align*}
T_{M}(x+2 \mathrm{i}) T_{1}(x+\mathrm{i}(M+3)) & =T_{M-1}(x+\mathrm{i})+T_{M+1}(x+3 \mathrm{i}) \\
& =T_{M-1}(x+\mathrm{i})+T_{M-1}(x+3 \mathrm{i}) . \tag{19}
\end{align*}
$$

The second relation is similarly proved.
We further generalize the expansion of trigonometric functions with even arguments more than two.

Lemma 2. Let ℓ be an odd integer. We have the following relation:

$$
\begin{gather*}
\binom{\cos (\psi(x)+\psi(x+2 \mathrm{i})+\cdots+\psi(x+2 \ell \mathrm{i}))}{\sin (\psi(x)+\psi(x+2 \mathrm{i})+\cdots+\psi(x+2 \ell \mathrm{i}))}=\frac{1}{\sqrt{T_{M}(x) T_{M}(x+\mathrm{i}(2 \ell+2))}} \\
\times \prod_{k=1}^{(\ell-1) / 2} \frac{\mathfrak{L}(x+(4 k-4) \mathrm{i})}{T_{M}(x+4 k \mathrm{i})}\binom{T_{M-2}(x+2 \ell \mathrm{i})}{T_{1}(x+\mathrm{i}(M+2 \ell+1)} \tag{20}\\
\mathfrak{L}(x):=\left(\begin{array}{cc}
T_{M-2}(x+2 \mathrm{i}), & -T_{1}(x+\mathrm{i}(M+3)) \\
T_{1}(x+\mathrm{i}(M+3)), & T_{M-2}(x+2 \mathrm{i})
\end{array}\right)
\end{gather*}
$$

where the order of the operator product should be understood as,

$$
\mathfrak{L}(x) \mathfrak{L}(x+4 \mathrm{i}) \ldots \mathfrak{L}(x+(2 \ell-6) \mathrm{i}) .
$$

Proof. This is easily shown by iterative applications of the recursion relation,

$$
\begin{array}{r}
\binom{\cos (\psi(x)+\psi(x+2 \mathrm{i})+\cdots+\psi(x+2 \ell \mathrm{i}))}{\sin (\psi(x)+\psi(x+2 \mathrm{i})+\cdots+\psi(x+2 \ell \mathrm{i}))}=\frac{1}{\sqrt{T_{M}(x) T_{M}(x+4 \mathrm{i})}} \\
\times \mathfrak{L}(x)\binom{\cos (\psi(x+4 \mathrm{i})+\psi(x+6 \mathrm{i})+\cdots+\psi(x+2 \ell \mathrm{i}))}{\sin (\psi(x+4 \mathrm{i})+\psi(x+6 \mathrm{i})+\cdots+\psi(x+2 \ell \mathrm{i}))} \tag{21}
\end{array}
$$

which follows from lemma 1.
The above recursion procedure is regarded as the forward propagation. Next let us perform the back-propagation procedure: we apply matrices \mathfrak{L} on the column vector. We observe a simple pattern there, which can be summarized as the following lemma.

Lemma 3. We introduce a vector v_{t} by

$$
\begin{equation*}
v_{t}:=\binom{T_{M-2-2 t}(x-(6+2 t) \mathrm{i})}{T_{2 t+1}(x+(M-5-2 t) \mathrm{i})} . \tag{22}
\end{equation*}
$$

Then the following back-propagation relation holds,

$$
\begin{equation*}
\mathfrak{L}(x+\mathrm{i}(2 M-10-4 t)) v_{t}=T_{M}(x-(4 t+8) \mathrm{i}) v_{t+1} . \tag{23}
\end{equation*}
$$

Proof. The first component in the left-hand side in (23) reads

$$
\begin{align*}
& T_{M-2}(x-(10+4 t) \mathrm{i}) T_{M-2-2 t}(x-(6+2 t) \mathrm{i}) \\
& \quad-T_{1}(x+\mathrm{i}(M-9-4 t)) T_{2 t+1}(x-\mathrm{i}(M+2 t+7)) \tag{24}
\end{align*}
$$

where we have applied the periodicity (9) to the last component. By the use of $I(M-2, M-$ $2 t-2, M-2 t-3, x-(4 t+10)$ i), one finds (24) equals $T_{M}(x-(4 t+8) i) T_{M-2-2(t+1)}(x-$ $\mathrm{i}(2(t+1)+6) \mathrm{i})$, which is nothing but the first component of the right-hand side. Similarly one applies $I(M, 2 t+3,2, x-(4 t+8)$ i) to the second component of the right-hand side in (23), leading to the equality.

We shall fix the relation between ℓ and M as follows:

$$
\ell= \begin{cases}M-2 & \text { if } M=\text { odd } \tag{25}\\ M-1 & \text { if } M=\text { even }\end{cases}
$$

Then our final lemma is as follows.
Lemma 4. Under the above relation between ℓ and M, one has
$\cos (\psi(x)+\cdots \psi(x+2 \ell \mathrm{i}))= \begin{cases}\frac{T_{1}(x-\mathrm{i}(M+3))}{\sqrt{T_{M}(x) T_{M}(x+(2 M-2) \mathrm{i})}} & M \text { odd } \\ \frac{1}{\sqrt{T_{M}(x) T_{M}(x+2 M \mathrm{i})}} & M \text { even. }\end{cases}$
Proof. Let us apply \mathfrak{L} to the vector in (20). For M odd, the initial vector reads,

$$
\begin{equation*}
\binom{T_{M-2}(x-6 i)}{T_{1}(x+\mathrm{i}(M-5) \mathrm{i})} \tag{27}
\end{equation*}
$$

which is nothing but $v_{t=0}$ in (22). The product of matrices in (20) is

$$
\begin{equation*}
\mathfrak{L}(x) \mathfrak{L}(x+4 \mathrm{i}) \ldots \mathfrak{L}(x+(2 M-14) \mathrm{i}) \mathfrak{L}(x+(2 M-10) \mathbf{i}) \tag{28}
\end{equation*}
$$

Thus one can apply (23) recursively to find
$\mathfrak{L}(x) \ldots \mathfrak{L}(x+(2 M-10) \mathrm{i}) v_{0}=\prod_{j=1}^{(M-3) / 2} T_{M}(x-(4+4 j) \mathrm{i})\binom{T_{1}(x-\mathrm{i}(M+3))}{T_{M-2}(x-2 \mathrm{i})}$.
Substituting (29) into (20), and after rearrangement using (9) one arrives at the odd case of lemma 4 from the first component. For M even, initial vector is $v_{t=0}^{\prime}=v_{t=0}(x \rightarrow x+2 \mathrm{i})$. Similarly, the product of \mathfrak{L} is given by $x \rightarrow x+2 \mathrm{i}$ in (28). The result of the application reads

$$
\begin{align*}
& \cdots \mathfrak{L}(x+(2 M-12) \mathrm{i}) \mathfrak{L}(x+(2 M-8) \mathrm{i}) v_{0}^{\prime} \\
& \quad=\prod_{j=1}^{(M-2) / 2} T_{M}(x-(2+4 j) \mathrm{i})\binom{T_{0}(x-(M+2) \mathrm{i})}{T_{M-1}(x-\mathrm{i})} . \tag{30}
\end{align*}
$$

Again the substitution of (30) into (20) leads to lemma 4 for M even case.
Proof of theorem 1. Now the left-hand side of (15) is explicitly written in terms of T-functions in lemma 4. It remains to check that it coincides with right-hand side. This can be easily done by (1) or from the definition of $\psi(x)$ itself.

As is noted previously, the common functional relation does not grantee the equality, $T_{M}(x)=\mathcal{D}_{M}(x)$: one needs further knowledge on their analytic structures. In this respect, we shall entirely depend on the argument in [1]. In the TBA equation originated from T system, one shall take the massless drive terms, $m_{a} r \mathrm{e}^{\pi x / 2 M},(a=1, \ldots 2 M-1)$ and setting $m_{M} r=\pi^{1 / 2} \Gamma\left(\frac{1}{2 M}\right) /\left(M \Gamma\left(\frac{3}{2}+\frac{1}{2 M}\right)\right)$. Then $\mathcal{D}_{M}(x)$ and $T_{M}(x)$ share the same analytical properties: both of them have the same 'asymptotic value' and have zeros on $\operatorname{Im} x= \pm(M+1)$. The latter is consistent with a property of the Schrödinger operator that eigenstates are all bounded so $E_{k}>0$. Thus one concludes the equality, $\mathcal{D}_{M}(x)=T_{M}(x)$.

Summarizing, we have proven one of conjectures in [1] that $T_{M}(x)$ actually shares the same functional relation with $\mathcal{D}_{M}(x)$. The proof utilizes the exact sequence of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. This makes us expect further deep connections between the anharmonic oscillator and quantum integrable structures.

The author thanks A Kuniba for calling his attention to [1] and for useful comments. He also thanks V V Bazhanov, T Miwa, Y Pugai and Z Tsuboi for comments.

References

[1] Dorey P and Tateo R 1998 Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations Preprint DTP-98/81, ITPA 98-41, (hep-th/9812211)
[2] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1998 Spectral determinants for Schrödinger equation and Q-operators of conformal field theory Preprint hep-th/9812247
[3] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[4] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1997 Commun. Math. Phys. 177 381-98
[5] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1997 Commun. Math. Phys. 190 247-78
[6] Chari V and Pressly A 1991 Commun. Math. Phys. 142 261-83
[7] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 9 5215-66
[8] Voros A 1983 Ann. Inst. Henri Poincaré A 39 211-338
[9] Voros A 1992 Adv. Stud. Pure. Math. 21 327-58
[10] Voros A 1994 J. Phys. A: Math. Gen. 27 4653-61
[11] Voros A 1997 Quasiclassical Method (IMA Proceedings, Minneapolis 1995) (IMA Series vol 95) ed J Rauch and B Simon (Berlin: Springer) pp 189-224
[12] Voros A 1999 J. Phys. A: Math. Gen. 32 1301-11
[13] Fendley P, Lesage F and Saleur H 1996 J. Stat. Phys. 85211
[14] Klümper A and Pearce P A 1992 Physica A 183304
[15] Zamolodchikov Al B 1991 Phys. Lett. B 253 391-4

